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ABSTRACT

We study the properties of generalized solutions in unbounded domains and the asymptotic
behavior of solutions of elliptic boundary value problems at infinity. Moreover, we study the unique
solvability of the Dirichlet and the mixed Dirichlet-Neumann biharmonic problems in the exterior of a
compact set under the assumption that generalized solutions of these problems has a bounded Dirichlet
(energy) integral with weight [x|*a. We used the variation principle and depending on the value of the
parameter $a$, we obtained uniqueness (non-uniqueness) theorems of these problems
or present exact formulas for the dimension of the space of solutions.
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1. INTRODUCTION _
Let 2 be an unbounded domain in B", n > 2, @ = R"\ & with the boundary 3¢ € C*, where

{r is a bounded simply connected domain (or a union of finitely many such l’.].l’}ﬂlﬁ.in'-p:l in R",
ki 51 I o o - - . N
0 €G, 2=0Ua is the closure of 2, x = (ry,...,2,) € R" and |z| = /] . JTE + 2.
In the domain 2 we consider the [ollowing mixed problems for the |}1haruumu equation

Au=0 (1)
with the Dirichlet boundary conditions
th
uL.M T 0, (2)

and the Dirichlet—Neumann boundary conditions

Fa JA YT
e 1

i
u| .
v gelry

=), Au|l.! =

=0, (3)

2

where F] Ufg =d. T'1NTa=0, mes, 17720, v=_14..... v} 18 the outer unit normal
vector to d9.
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Asg is well known, if 12 is an unbounded domain, one should additionally characterize the
behavior of the solution at infinity. As a rule, to this end, one usually poses either the condition
that the Dirichlet (energy) integral is finite or a condition on the character of vanishing of the
modulus of the solution as |r| — oo. Such conditions at infinity are natural and were studied
by several authors (e.g., [10]- [12]).

The behavior of solutions of the Dirichlet problem for the biharmonic equation as |z| — oo
was considered in [7]. [8]. where estimates for |u(x)| and |Vu(z)| as |z] — oo were obtained
under certain geometric conditions on the domain boundary.

Elliptic problems with parameters in the boundary conditions have been called Steklov or
Steklov-type problems since their first appearance in [30]. For the biharmonic operator, these
conditions were first considered in [1], [13] and [28], whose authors the isoperimetric properties
of the first eigenvalue were studied.

Note that standard elliptic regularity results are available in [4]. The monograph covers
higher order linear and nonlinear elliptic boundary value problems, mainly with the biharmonic
or polyharmonic operator as leading principal part. The underlying models and, in particular,
the role of different boundary conditions are explained in detail. As for linear problems, after a
brief summary of the existence theory and LP and Schauder estimates, the focus is on positivity.
The required kernel estimates are also presented in detail.

In [3] and [4]. the spectral and positivity preserving properties for the inverse of the
biharmonic operator under Steklov and Navier boundary conditions are studied. These are
connected with the first Steklov eigenvalue. It is shown that the positivity preserving property
is quite sensitive to the parameter involved in the boundary condition. Moreover, positivity
of the Steklov boundary value problem is linked with positivity under boundary conditions of
Dirichlet and Navier type.

In [2]. the boundary value problems for the biharmonic equation and the Stokes system are
studied in a half space, and, using the Schwartz reflection principle in weighted L9 -space, the
uniqueness of solutions of the Stokes system or the biharmonic equation is proved.

In the present note, this condition is the boundedness of the weighted Dirichlet integral:

Da(u, ) = f lz* 3 [0%ufPdr < o, acR
L]

|ex|=2

In various classes of unbounded domains with finite weighted Dirichlet (energy) integral, one
of the author [14]- [26] studied unigueness (non—unigueness) problem and found the dimensions
of the spaces of solutions of boundary value problems for the elasticity system and the biharmonic
{polyharmonic) equation.

By developing an approach based on the use of Hardy type inequalities [6], [10]- [12], in the
present note, we obtain a unigqueness (non—uniqueness) eriterion for a solution of the Dirichlet
and the mixed Dirichlet—Neumann problems for the biharmonic equation.

Notation: CF°(€2) is the space of infinitely differentiable functions in 1 with compact
support in 2.

We denote by H™(0.T), T' C 11 the Scbolev space of functions in €2 obtained by the
completion of €'°°({2) vanishing in a neighborhood of T’ with respect to the norm

1/2
w: H™(Q, TY|| = f | dr , m=1,2,
Il (€2, 1)]| ( L > 197w )

la]=m

where 9° = E:i'|‘1|fﬂ;r‘-f‘ e Bz o = (m,...,0,) I8 a mnlti-index, a; > 0 are integers, and

x| = e¥q +- -+ + orpy; T = ), we denote H™(02,T') by H™(L2).
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om

H (f2) is the space obtained by the completion of C§°(f1) with respect to the norm
lJu(a); H™ ()]

m
."g' loe (§2) is the space obtained by the completion of C3%(£2) with respect to the family of

Semi-norms
1/2

[le: H™($2 N Bo(R))|| = [ > 19%uf dx
M By(K) lol<m

for all open balls Bp(R) := {z : |x] < R} in R" for which 92N Bp(R) # 0.
Let () be the (n. k) - binomial coefficient, (})=0 for k > n.

2. Definitions and auxiliary statements
Definition 2.1. A4 selufion of the homogenous biharmoenic equation (1) in Q is a function
u € Hi, (1) such that, for every function p € C5°(02). the following integral identity holds:

[.ﬁuﬂ.gﬁdﬂ:=t}.
JL2

Lemma 2.2, Let u be a solution of equation (1) in Q such that Dg(u,?) < oc. Then

u(x) =Plz)+ Y T@)Ca+u’(z), zeq, (4)

Bo<lal<g
where P(x) is a polynomial, ord Pz} < mp = max{2,2 — nf2 — af2}, Sy =2 — nf2+ a/f2,
[(x) s the fundamental solution of equation (1), Cy = const, 3 = 0 is an integer, and the
function u?® satisfies the estimate:
|06 (z)| < Coglx*"P-Pl, €5 = const,

Sfor every multi-inder .

Remark 2.3. As is known [29], the fundamental solution T'(x) of the biharmonic equalion has
the form

I(z) = Clz|i=™, if4—n < Qornisodd,
Z)= Clz|*="In|x|, if4 —n > Dandniseven.

Proof of Lemma 2.2. Consider the function v(z) = Oy(x)ul(zr). where Oy(z) =
B(|=|/N).0 € C(R"), 0 = 8 <1, #(s) =0for s <1, 8(s) =1 for s = 2, while N > 1
and & C {x: |z] < N}. We extend v to B™ by setting v =0o0on G =R"\ (L

Then the function v belongs to C*(R™) and satisfies the equation

A%y = f,

where f e CF°(R") and supp f C {z : || < 2N} It is easy to see that D, (v.R") < oco.
We can now use Theorem 1 of [9] sinece it is based on Lemma 2 of [9], which imposes no
constraint on the sign of o. Hence, the expansion

v(z) = P(z)+ D 8T (z)Ca+v7(x),
Bu<|al=a

holds for each a, where P(r) is a polynomial of order ord P(x) < mg = max{2. 2 —n/2 —a/2},
Go=2—n/2+af2 C,=const and

|70 (x)] < Colef""7P, €y = const.

Therefore, by the definition of v, we obtain (4). The proof of Lemma 2.2 is complete.
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Definition 2.4. A function u is a solution of the Dirichlet problem (1), (2). if u € HZ_(11)
such that for every function ¢ € CF°(R"), ¢ = 0 in the neighborhood of infinity, the following

infegral identily holds:
AuApdr. (5)
0
Definition 2.5. A funcfion u is a solution of the mirved Dirichlei-Neumann problem (1), (3),
2
if u EFI;M (2.T'1) such that for every function ¢ € CFF(R"). » = 0 in the neighborhood of T,
the following integral identity (5) holds.

3. Main Results
Theorem 3.1. The Dirichlet problem (1), (2) with the condition D{u, ) < oo has n+1 linearly

independent solutions.

Proof. For any nonzero vector A in B", we construct a generalized solution u 4 of the biharmonic
equation (1) with the boundary conditions

Huy(r) a( Ax)
ua(x)|go = (A7) 0. v |3ﬂ T v |asz‘ 6)
and the condition
( |u_.,_{.-r}|2 |ﬁ'u__1{x}|2 2)
- + |V Vua(x) dr < oo
L(Mr Foak '
( Q) for n > 4, ™
Xlty, =4
lua(@)l® | |Vua(z) 2)
+ + |[VVualx dx < oo
fﬂ(n:r:l?mxnz llzlnfz)? * VYVl
L for 2<n-<4,

for A,x € B™, where Ar denotes the standard scalar product of A and x.
Such a solution of problem (1), (6) can be constructed by the wvariational method [29],

minimizing the functional
1
B(v) = —/ |ﬂi:|2{f.’c
2 Ja

in the class of admissible functions {u: v € H2(£2), 1.-{;r}|3§-_, = {A.-r]Laﬂ. %Jﬁ an = %'m v
is compactly supported in ﬁ}.

The validity of condition (7) as a consequence of the Hardy inequality follows from the results
in [10]- [12].

MNow, for any arbitrary number e # (), we construct a generalized solution w, of equation (1)
with the boundary conditions

S,
Hslm =g, Y = {Ej

2]

and the condition

"f (|1.-,,=:1f;r:}|2 W | Ve ()| £ |"E"'~Tf'ue{2':}|2) dr < oo
0

|| 4 |=|?
for n = 4,

X (e, ) = 4 (D)2 |[Vue(o)]?
= + = .,+"G"'C’uea:2):f:r:<:oc:
fﬂ(uxﬁ nfeP ¥ e + VY

(9)

for2<n<4.

"
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The solution of problem (1), (8) also is constructed by the variational method with the
minimization of the corresponding functional in the class of admissible functions {v : v £
H2(Q), v],, = e, %Lgﬂ =0, v iscompactly supported in 02}.

The condition (9) as a consequence of the Hardy inequality follows from the results in [10]-
[12].

Consider the function v{x) = (walx) — dx) — (u. — ).

Obviously, v is a solution of problem (1). (2):

a3 . _ P TY i
Alv=0, ze9, v|,,= = m—ﬂ.
One can easily see that v £ 0 and D(v, 1) < cc.

To each nonzero vector A = (Ap, Ay, ..., An) in B!, there corresponds a nonzero solution
ta = (Ta,, YAy 4, ) of problemn (1), (2) with the condition D({va. ) < oc, and moreover,
valz) = ualx) —u. — Ax +e.

Let Ap, A1.....A4; be a basis in B®+!, Let us prove that the corresponding solutions
YAy, VA, .-, t0q, are linearly independent. Let
"
Z Civg, =0, ' = const .
i=0

Set W(xr)=3_[_; Cidir — Cpe. We have
n

Wizx) = ZC;&AJI} — Choitte,
i=1

f 2| 2 IVWP dx < 00, n >4,
0
f lzln |z|| 3 IVW [P dz < oo, 2<n<d.
0

Let us show that .
if&}zzjﬂﬂﬁ—i%ezﬁ

i=l1

Let T=3 T CijA; = (lo,....tn), where Ag = —e. Then

/ﬂﬂﬂvw
S0

f ||| In|z|| 2| VW |* dz =f lle|In|z||~2( + - + ) dr =00, 2<n<4,
1) 0

2dx=f|i|—2(ﬁ+_..+fﬁ};&=m, n>4,
0

if T 0.
Consequently, T = " C;4; = 0, and since the vectors Ay, 4;,.... 4, are linearly
independent, we obtain (=0, i=0,1,....n.

Thus, the Dirichlet problem (1), (2) with the condition D(u,Q) < oo has at least n + 1
linearly independent solutions.

Let us prove that each solution u of problem (1), (2) with the condition D{w,f1) < ac can
be represented as a linear combination of the functions va,, va,. ..., Uy, , Le

e
U= E Civa,, ; = const .
i={

= 7 194
&
G JESR (O)Global Journal Of Engineering Science And Researches



(ERID

£ THOMSON REUTERS

[Matevossian, 6(3): March 2019] ISSN 2348 - 8034
DOI- 10.5281/zenodo.2613220 Impact Factor- 5.070
Since Ay, A;,..., A, is a basis in R*!, it follows that there exists constants Cy, Cy,...,C,
such that “
A=) CA
i=i)

We set ;
g =u— z Civg,.
i=(0

Obviously, the function wup is a solution of problem (1), (2), and D{up. Q) < oo,
y(ug, ) < oo,

Let us show that ug = 0, x € £1. To this end, we substitute the function ¢(x) = up(x)fy(z)
into the integral identity (5) for the function ug, where Oy (z) = 8(|z|/N), # € C=(R), 0 <8 < 1,
f(s) =0 for s > 2 and #(s) = 1 for s < 1; then we obtain

fﬂ (Ato)20n(z) e = — i (o) — Ja{tic), (10)

where
.rlfuu)=zf!;auﬂvuﬂvﬂﬂmmr. Jg{ug}=ﬁug.ﬁugﬂﬁ‘;.;{x}dm.
{
By applying the Cauchy-Schwarz inequality and by taking into account the conditions

D(ug,?) < = and y(up.€?) < oo, one can easily show that Jy(ug) — 0 and .H(ug) — 0 as
N — . Consequently, by passing to the limit as N —+ oo in (10), we obtain

ji;muﬂ}? dr = (.

Therefore, we have
Ang=10, =il

el 22 i
dl-’ A0
Hence, it follows [3, Ch.2] that wp = 0 in 2. The proof of the theorem is complete. O

Theorem 3.2. The Dirichiet problem (1), (2) with the condition Dg(u, ) < oo has:
(i) the trivial solution forn —2 < a < oo, n > 4;
(i) n linearly independent solutions forn —4d<a<n—2, n = 4;
fiii) m + 1 linearly independent solutions for —n<a<n—4. n > 4;
fiv) k{r.n) linearly independent solutions for —2r +2 —n<a < -2r4+4—n, v >1, n >4,

uliere 2
k{r,n}=(r+n)—(r+n_ )
n n

Complete proof of Theorem 3.2 carried out in [15].

Theorem 3.3. The mived Dirichlel—Neumann problem (1).(3) with the condition D{u, Q) < oo
has n+ 1 linearly independent solutions.

The proof of Theorem 3.3 is also carried out as in Theorem 3.1.
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Theorem 3.4. The mired Dirichlet—Neumann problem (1), (3) with the condition D, (u, Q) <
oo has:

(i) the trivial solution forn —2 <a <m0, n > 4;

i) n linearly independent solutions forn —4 <a<n—2, n > 4;

{iii) n + 1 linearly independent solutions for - n<a<n—4, n > 4;

fiv) k(r.n) linearly independent solutions for —2r +2—n<a<-2r+4d—n.r>1. n>4,

where
k(r,n) = (-r ) == (r 4)
n T

The proof of Theorem 3.4 is based on Lemma 2.2 about the asymptotic expansion of the
solution of the biharmonic equation and the Hardy type inequalities for unbounded domains
[10]- [12]. In case (iv), we need to determine the number of linearly independent solutions of
the biharmonic equation (1), the degree of which not exceed the fixed number.

It is well know that the dimension of the space of all polynomials in B™ of degree < r is equal
("T™) [27]. Then the dimension of the space of all biharmonic polynomials in B® of degree < r

is equal to
r4+n r4+n—4
n n '

since the biharmonic equation is the vanishing of some polynomial of degree v — 4 in R". If
we denote by k(r.n) the number of linearly independent polynomial solutions of equation (1)
whose degree do not exceed v and by I(r,n) the number of linearly independent homogeneons
polynomials of degree r, that are solutions of equation (1), then

k{r,n) = E I{s,n),
a=l

s+n—1 s+mn—>a
I[s~71]=( n?—l )—( o 4 ), g>0.

Further, we prove that the Dirichlet problem (1), (3) with the condition Dg(u,£}) < oc for
—2r+2-—n<a< —2r+4—n has equally E(r,n) of linearly independent solutions.

where
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